semantic change
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Noise factors in common pipeline for semantic change analysis

Split and align — two sources of noise

m time bins, C,, Cp, ..., C,,.

|+ Embedding are trained on each bin separately.

* This “downsample” the words’ frequency, as
each embedding in based on smaller sample.
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* Orthogonal Procrustes Analysis is computed between two embedding spaces:
W* = argmin,, || X183°W — Y1969
and applied to make the spaces alighed and comparable.
* Embeddings of the same word from two time bins are compared using cosine-
similarity, which provide an estimate for lexical semantic change for that word.

Alignment is not perfect and introduces noise.

Temporal referencing?!?

Temporal referencing (TR) supports training on the original corpus, which
circumvent the sp/it and aljgn steps and their assumed noise.

Example
Silken cauliflowers sown broadcast!®’? over the land.

The dramatic broadcast!?’Y stunned the nation.

Following comparisons would inform us about the assumed sources of noise.

Model

PPMI,, Testing for separate noise from

PPMI downsampling ! Testi:g fO'.'
separate noise

7 .
from alignment

SGNS,, Testing for combined noise from
SGNS;q downsampling and alignment

Experiment 1 — TR Is less noisy

Performance under a shuffled corpus provides an estimate for noise levels3.
Comparison to the original corpus provides an estimate for true effect size.

True semantic change
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Downsampling and alighment are two independent sources of noise.
Noise by alighment is much greater than by downsampling.
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Experiment 2 — TR Is better in detecting synthetic change

|. Injecting synthetic semantic change into a corpus (for 356 words)

Original text Text with injected change Craat?fe
‘) A wedding ring = A wedding ring [100%]
‘) A wedding ring = A wedding ring [100%]
‘) A wedding ring -> A wedding ring [100%]
t, A wedding ring > 4 A wedding ring [100%]
‘. A wedding ring -> A wedding ring [100%]
¢ A weddiling ring > 4 A weddilng ring [100%]
¢ A wedding ring -> A wedding ring [100%]

* Additional 356 stable control words match the frequency increase
** Steps without injection are shaded.

2. Compare average cosine distance for change & stable words
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Sense injection steps Sense injection steps

Synthetic change validated, change words are markedly different than stable words

for all models.

3. Synthetic semantic change as a classification task

225

True labels Traln naive classifier
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Injectea(change
PPMIar.  PPMItk  SGNSaL  SGNStr

Stable 0.52 0.54 0.37 0.57
Unrelated  0.83 0.83 0.86 091
Related 0.73 0.73 0.78 0.78
Mean acc.  0.65 0.66 0.59 0.70
F1-score 0.69 0.69 0.67 0.74

All models perform better than chance in detecting synthetic semantic change.
TR has the best performance!

Experiment 3 - TR is better in detecting attested change*

SGNS PPMI
Align TR Align TR

Change (0.47 0.31 r0.86 0.86
Stable \.(0.34 0.21 \0.71 0.73

DIFF  38%  50% 20% 17%

TR shows the largest increase between change and stable words (13 change, |19 stable).

Conclusions

|. Downsampling and alignment each introduces a separate source of noise.
2. TR allows to train embedding not exposed to any of these two noises.

3.TR is better at detecting synthesis as well as attested semantic change.

4.TR provides a less nosier model as well as better detection for semantic
change.



