

UNIVERSITY OF

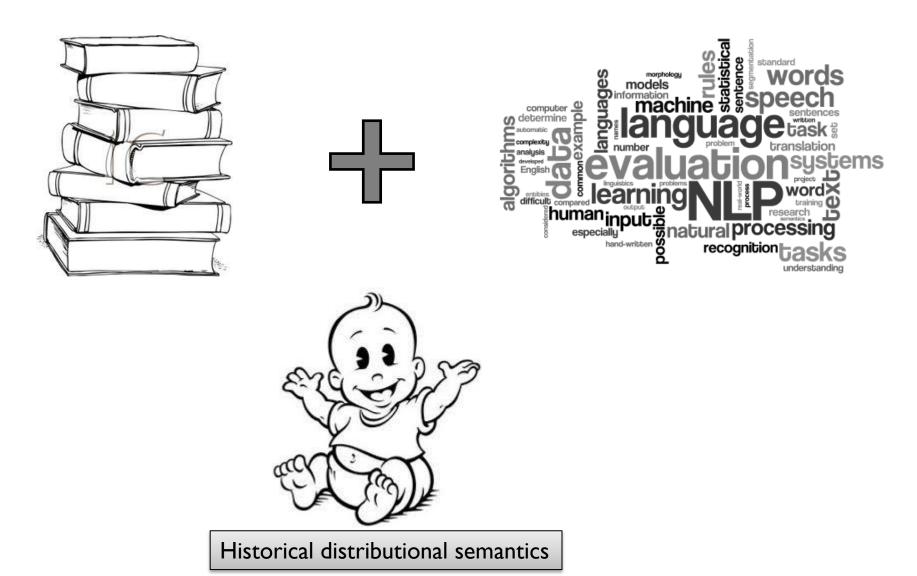
CAMBRIDGE

Semantic Change in the Time of Machine Learning: doing it right! Haim Dubossarsky

1st International Workshop on Computational Approaches to Historical Language Change Florence, August 2019

hd423@cam.ac.uk

Congratulations!



Outline

- Problem breakdown
- Working with faulty models
- Case I: Laws of semantic change
- Case II: Comparing models' quality
- Conclusions

it's everywhere,it's effects can be felt,but you cannot see or touch it

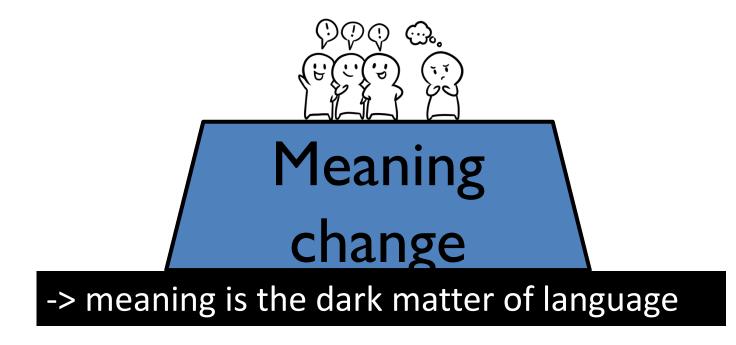
-> meaning is the dark matter of language

Slide, courtesy of Prof. Dirk Geeraerts

it's everywhere,

it's effects can be felt,

but you cannot see or touch it



Solving this conundrum

1st International Workshop on Computational Approaches to Historical Language Change 2019

Nina Tahmasebi , Lars Borin , Adam Jatowt , Yang Xu

Problem breakdown

The distributional hypothesis

Words occurring in similar contexts tend to have similar meanings (Z. Harris, 1954)

You shall know a word by the company it keeps (Firth, J. R. 1957:11)

• Could be sparse vectors (counts, PPMI, RI)

$$w_{j} = news \quad w_{k} = reporter \qquad w_{l} = do \qquad w_{m} = ceiling$$

$$w_{i} = broadcast \qquad 94 \qquad 56 \qquad 0 \qquad 0 \qquad |V|$$
• Or dense vectors (word2vec, FastText, Glove)
$$\frac{? \quad ?? \qquad ???}{??}$$

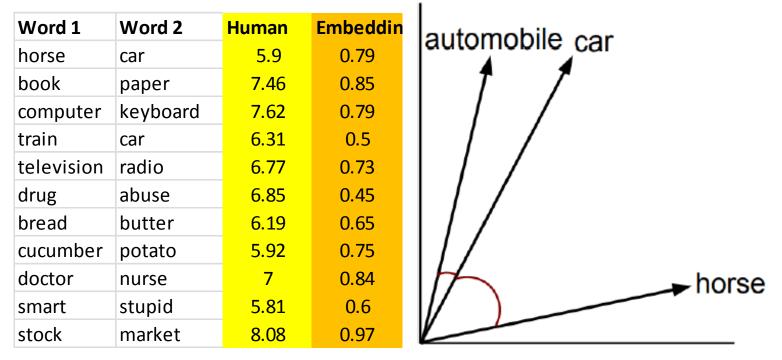
$$w_{i} = broadcast \qquad 0 \qquad |V|$$

• Or yet contextual embedding (ELMo, Bert)

All <u>define</u> meaning as usage statistics.

Embeddings capture meaning

But how did we come up with that conclusion?

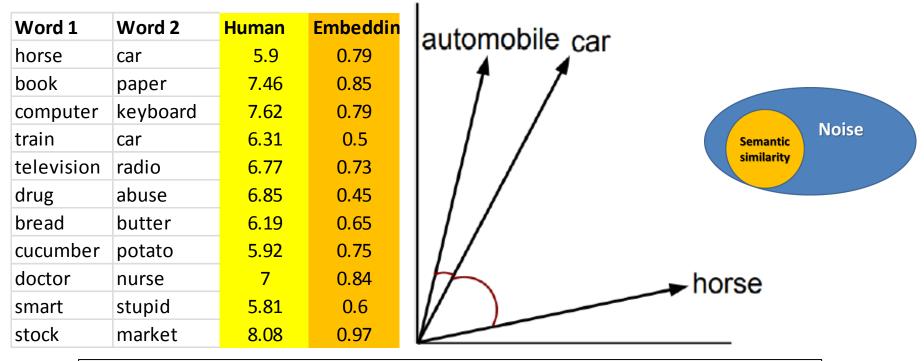


r=.72

cosine similarity(w¹, w²) =
$$\frac{\vec{w}^1 \cdot \vec{w}^2}{\|\vec{w}^1\| \cdot \|\vec{w}^2\|}$$

Embeddings capture meaning

But how did we come up with that conclusion?



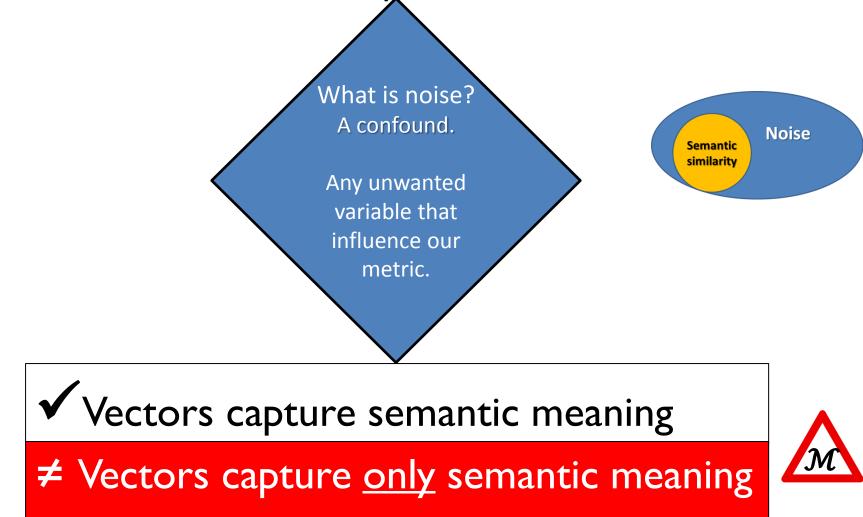
r=.72

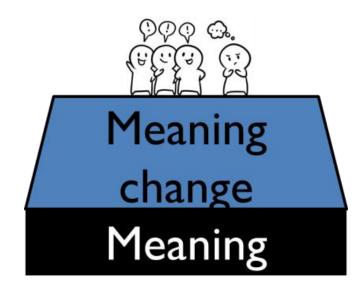
Vectors capture semantic meaning

Vectors capture only semantic meaning

Embeddings capture meaning

But how did we come up with that conclusion?



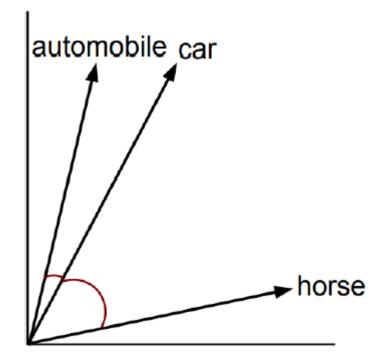


Semantic change definition

Change to a word's embeddings between two time points [word relative to itself]

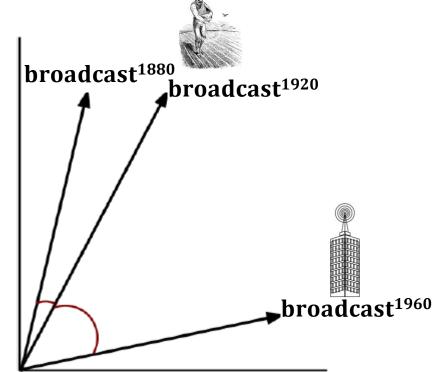
$$\Delta w^{t^0 \to t^1} = cosDist(w^{t_0}, w^{t_1}) = 1 - \frac{\overrightarrow{w}^{t_0} \cdot \overrightarrow{w}^{t_1}}{\|\overrightarrow{w}^{t_0}\| \cdot \|\overrightarrow{w}^{t_1}\|}$$

Word 1	Word 2	Human	Embeddin
horse	car	5.9	0.79
book	paper	7.46	0.85
computer	keyboard	7.62	0.79
train	car	6.31	0.5
television	radio	6.77	0.73
drug	abuse	6.85	0.45
bread	butter	6.19	0.65
cucumber	potato	5.92	0.75
doctor	nurse	7	0.84
smart	stupid	5.81	0.6
stock	market	8.08	0.97

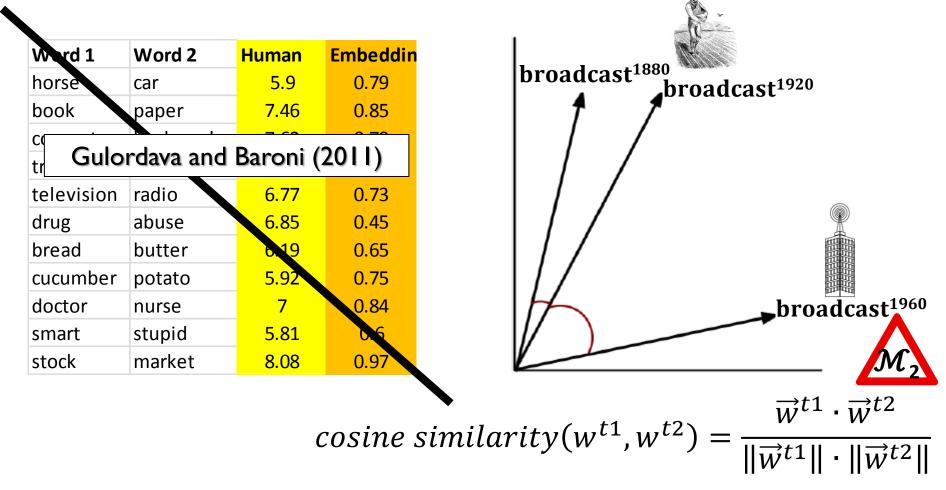


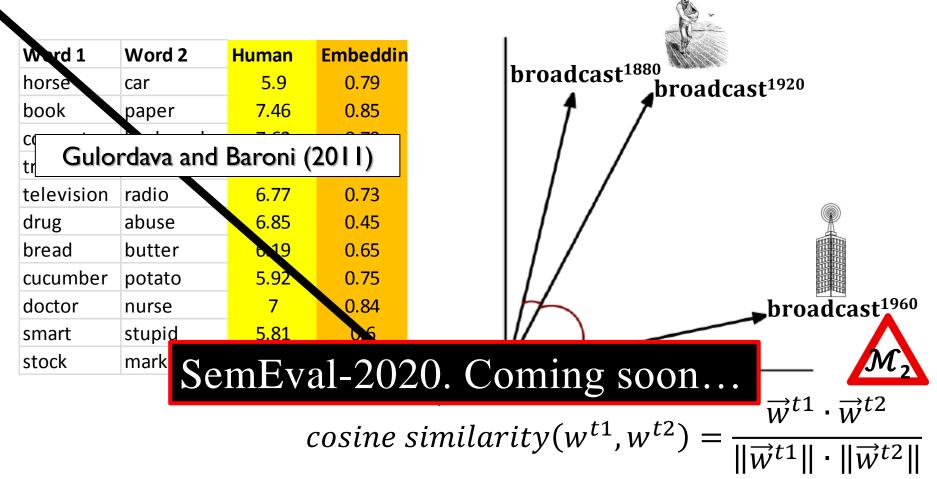
 $cosine \ similarity(w^1, w^2) = \frac{\vec{w}^1 \cdot \vec{w}^2}{\|\vec{w}^1\| \cdot \|\vec{w}^2\|}$

Word 1	Word 2	Human	Embeddin
horse	car	5.9	0.79
book	paper	7.46	0.85
computer	keyboard	7.62	0.79
train	car	6.31	0.5
television	radio	6.77	0.73
drug	abuse	6.85	0.45
bread	butter	6.19	0.65
cucumber	potato	5.92	0.75
doctor	nurse	7	0.84
smart	stupid	5.81	0.6
stock	market	8.08	0.97

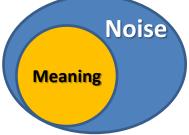


 $cosine \ similarity(w^{t1}, w^{t2}) = \frac{\overrightarrow{w}^{t1} \cdot \overrightarrow{w}^{t2}}{\|\overrightarrow{w}^{t1}\| \cdot \|\overrightarrow{w}^{t2}\|}$



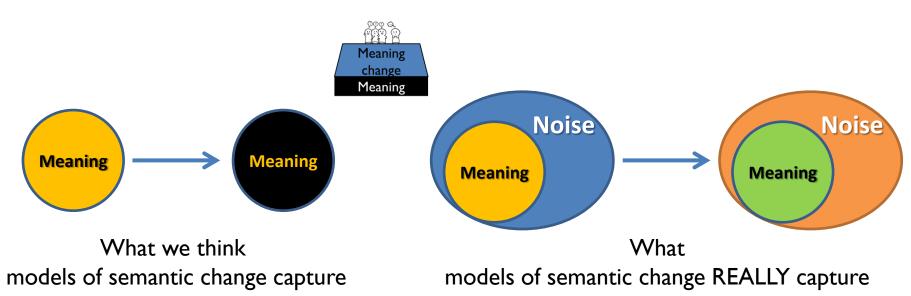


Problem breakdown

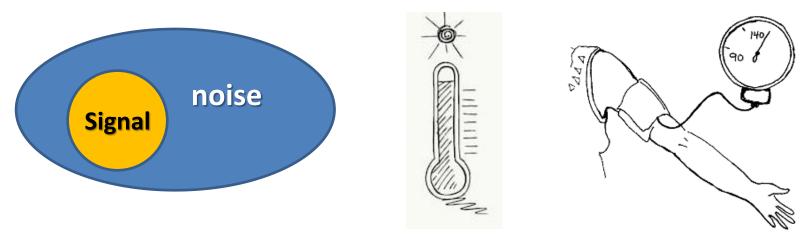


What we think word embeddings capture

What word embeddings REALLY capture



All models are wrong



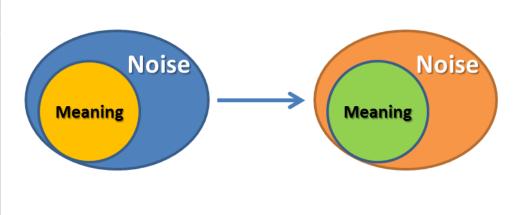
- I. <u>How wrong</u> are they?
- 2. Are they importantly wrong?

Depends on what do we use these models for

When to worry about noise

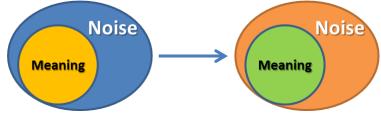
- I. Word embedding as some proxy for meaning
 - Machine translation, chat bots...
 - Detecting semantic change

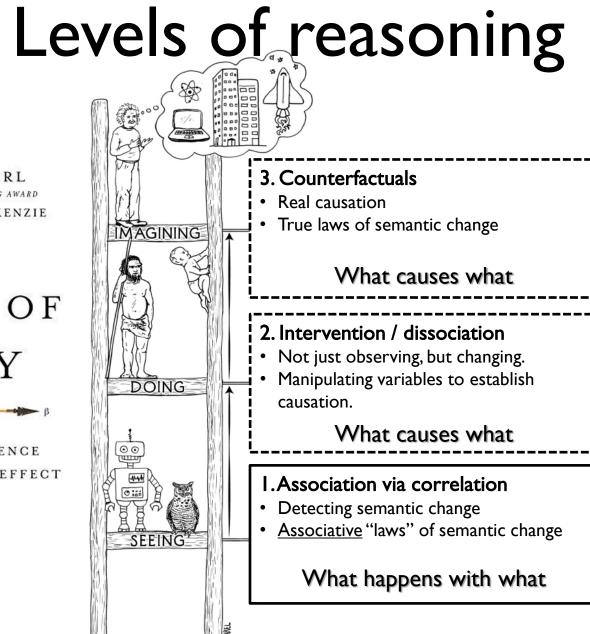
Most C	Thomasd	Loost Changed	
Most Changed		Least Changed	
Word	Similarity	Word	Similarity
checked	0.3831	by	0.9331
check	0.4073	than	0.9327
gay	0.4079	for	0.9313
actually	0.4086	more	0.9274
supposed	0.4232	other	0.9272
guess	0.4233	an	0.9268
cell	0.4413	own	0.9259
headed	0.4453	with	0.9257
ass	0.4549	down	0.9252
mail	0.4573	very	0.9239



When to worry about noise

- I. Word embedding as some proxy for meaning
 - Machine translation, chat bots...
 - Detecting semantic change
- 2. Word embedding as the object of study
 - Over interpret differences in embeddings that actually stem from noise.
 - Laws of semantic change



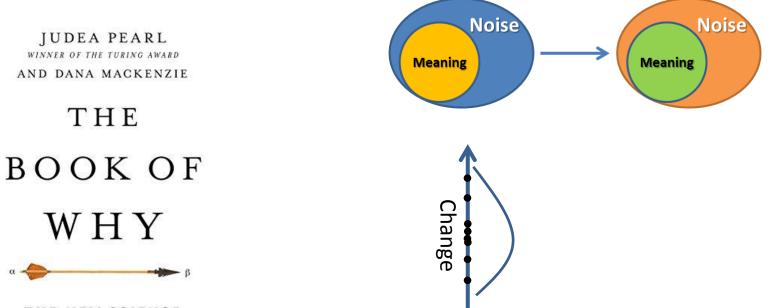


JUDEA PEARL winner of the turing award AND DANA MACKENZIE

тне воок оf WHY

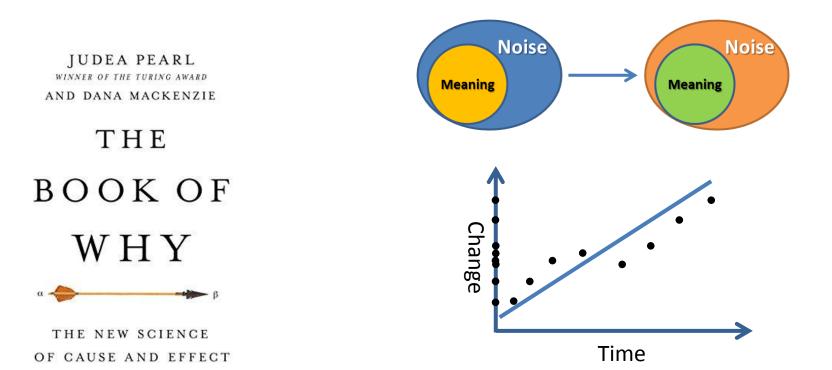
THE NEW SCIENCE OF CAUSE AND EFFECT

Risks in associative reasoning

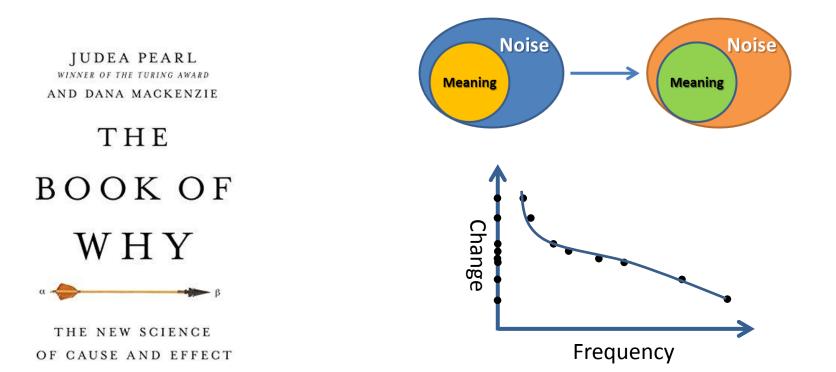


THE NEW SCIENCE OF CAUSE AND EFFECT

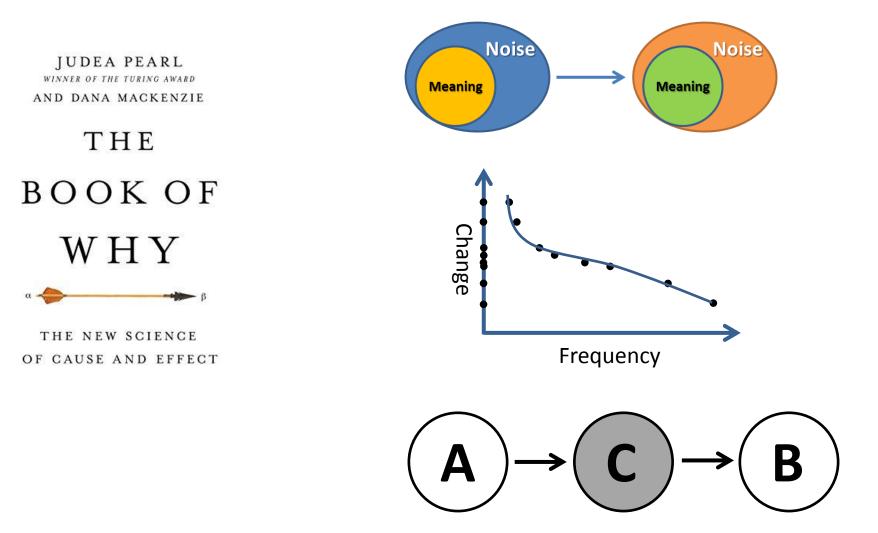
Risks in associative reasoning



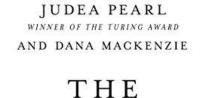
Risks in associative reasoning



Risks in associative reasoning



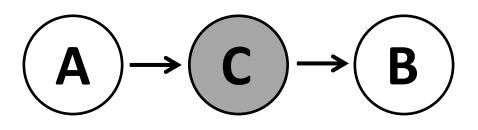
Risks in associative reasoning



ВООК ОF Why

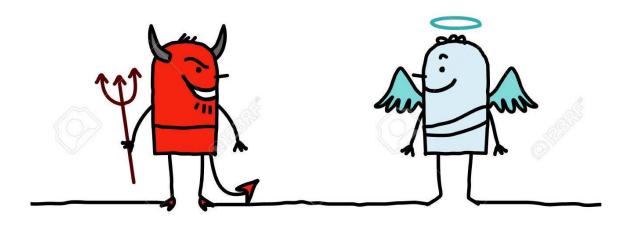
THE NEW SCIENCE OF CAUSE AND EFFECT

Randomized Controlled Trials

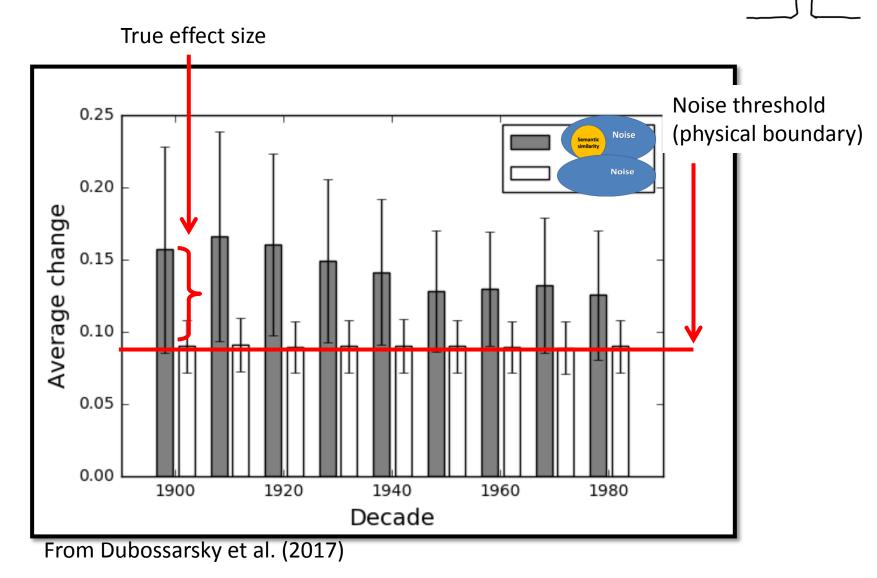


Randomized Controlled Trials Case I

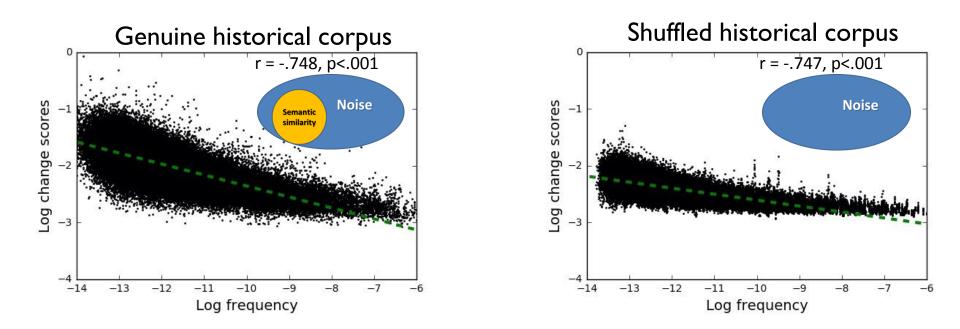
Laws of semantic change



How wrong models are?



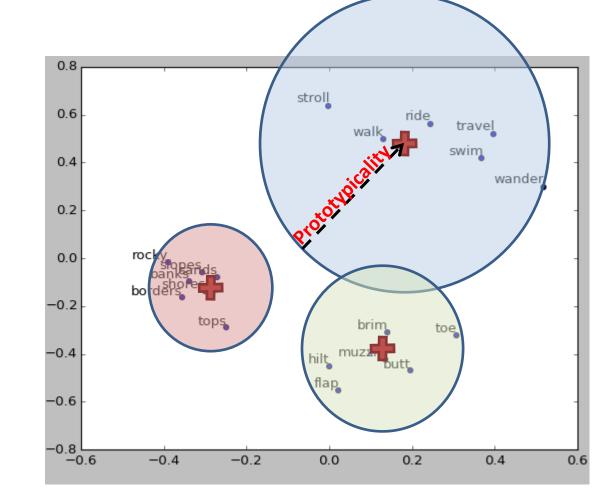
Are they importantly wrong?



Equal effect sizes for the *genuine* historical corpus and the *shuffled* historical corpus (Dubossarsky et al. 2017).

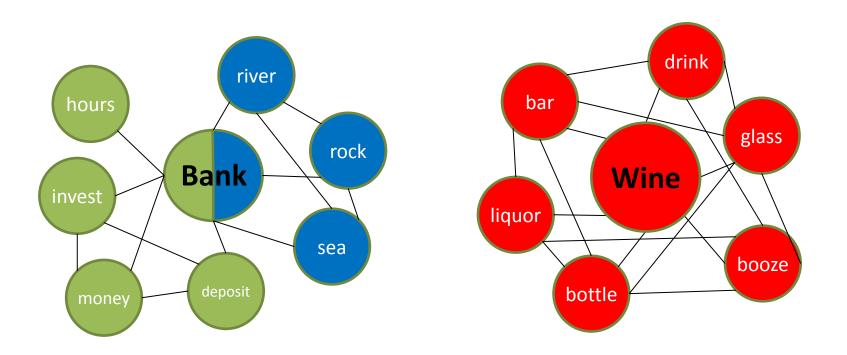
"Laws" of semantic change

• Law of Prototypicality (Dubossarsky et. al. 2015).



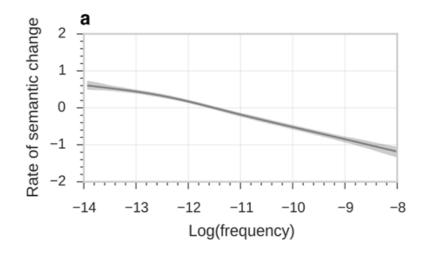
"Laws" of semantic change

- Law of Prototypicality (Dubossarsky et. al. 2015).
- Law of Innovation (Polysemy, Hamilton et. al. 2016).



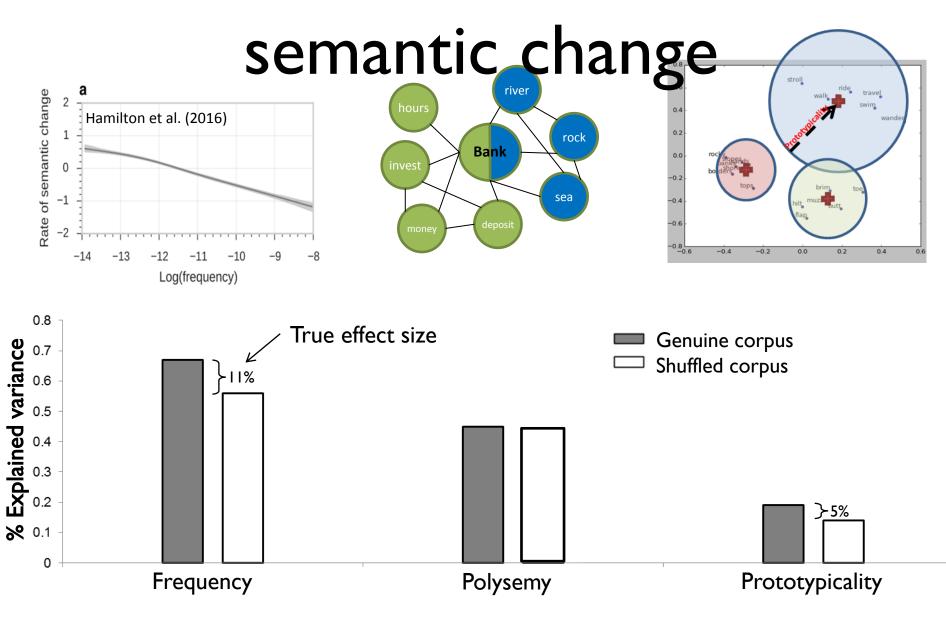
"Laws" of semantic change

- Law of Prototypicality (Dubossarsky et. al. 2015).
- Law of Innovation (Polysemy, Hamilton et. al. 2016).
- Law of Conformity (Frequency, Hamilton et. al. 2016).



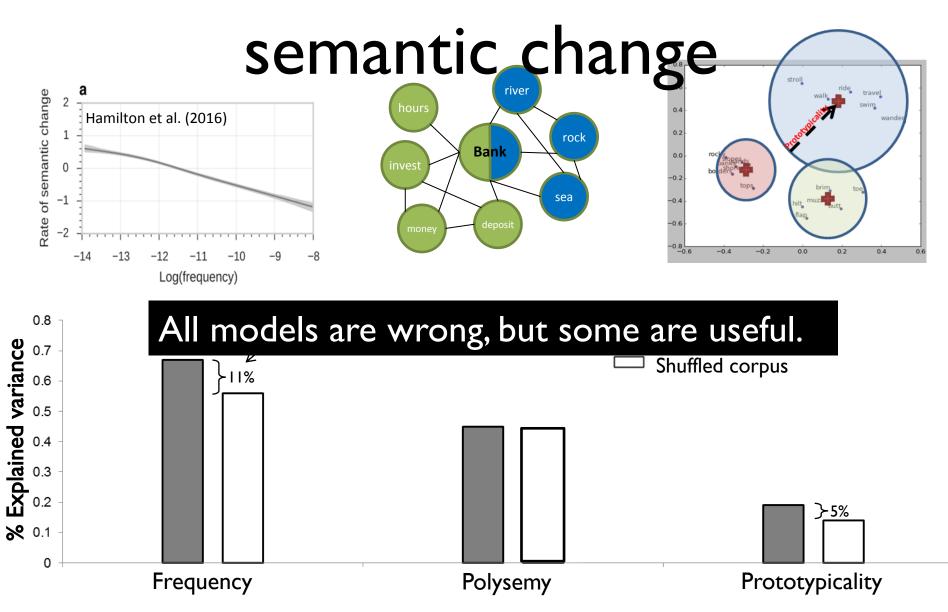
Laws of semantic change

Associative laws of



Laws of semantic change

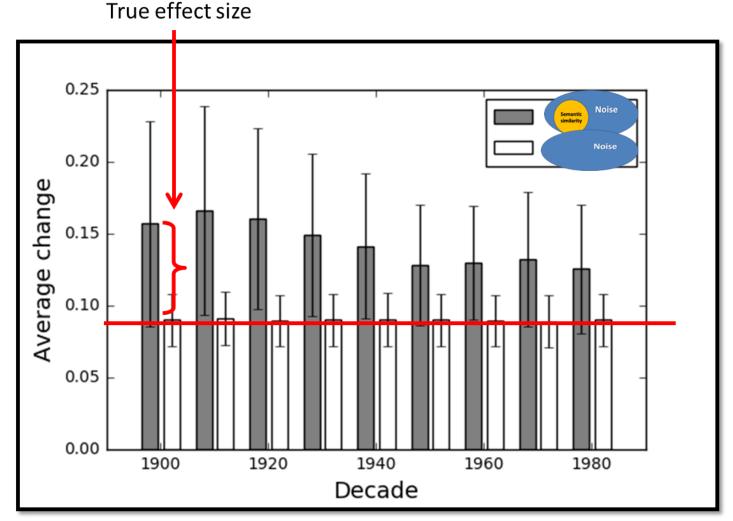
Associative laws of



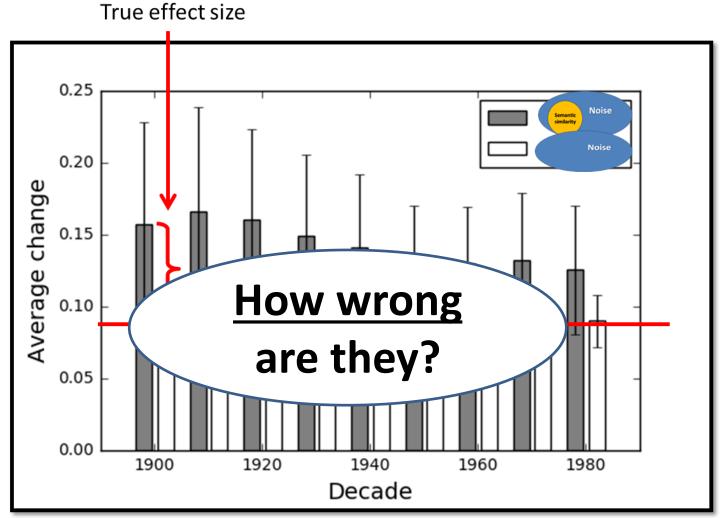
Randomized Controlled Trials Case II

General framework to compare models' noise levels and quality

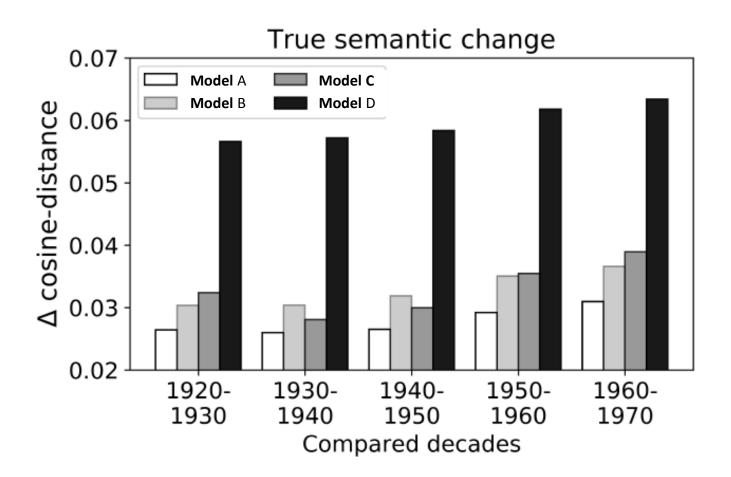
Evaluate noise levels



Evaluate noise levels



Evaluate noise levels



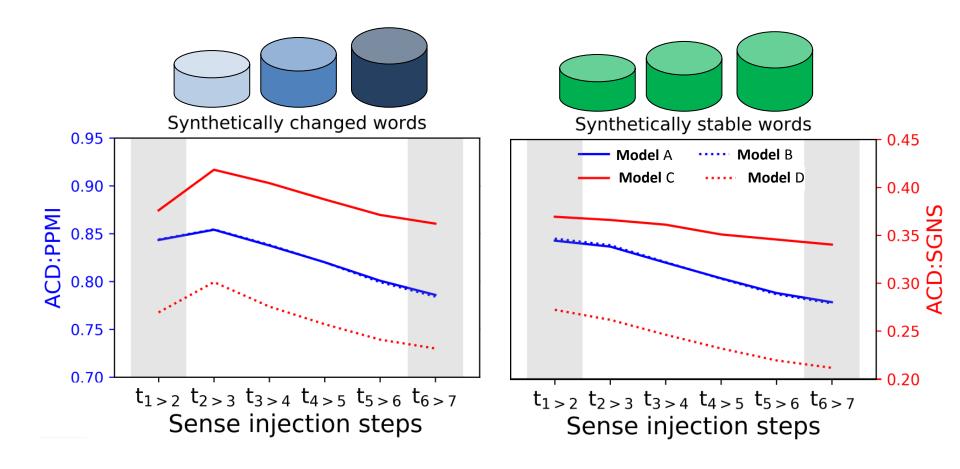
(Dubossarsky et al. 2019)

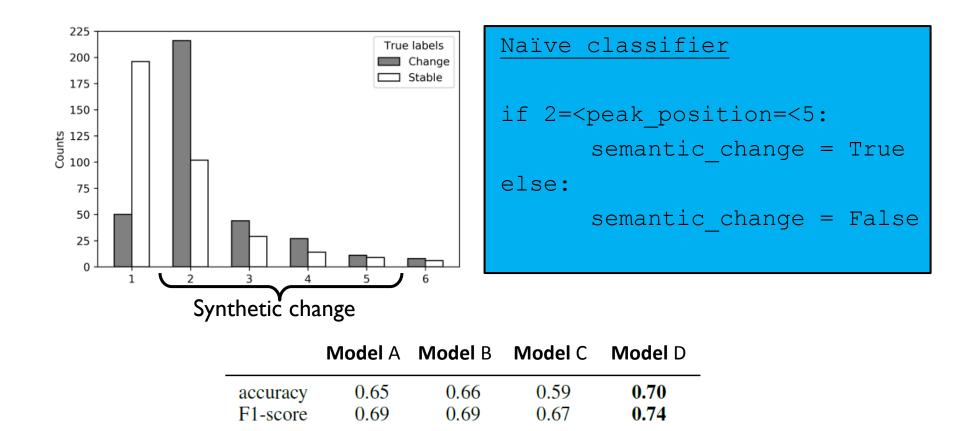
Synthetic semantic change

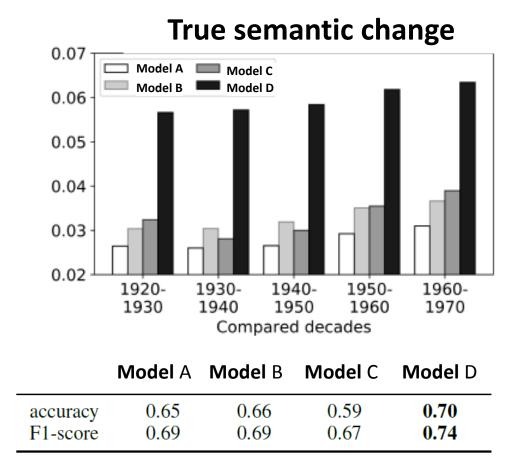


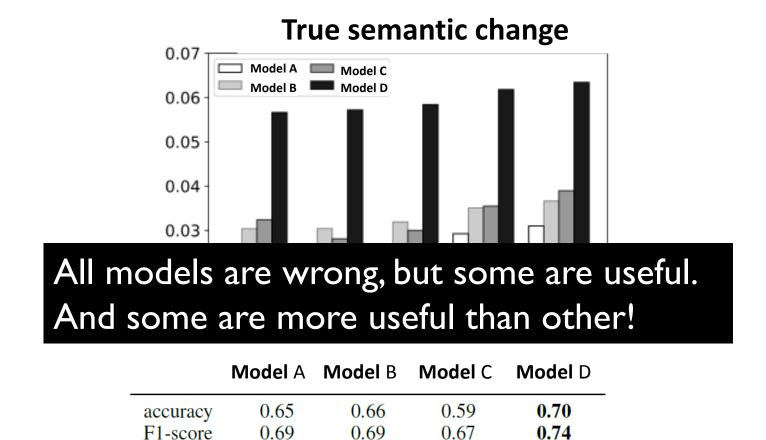
Synthetic semantic change Synthetic change words Synthetic stable words 1. A wedding ring \rightarrow A wedding ring [100%] No bracelet! 2. A wedding ring \rightarrow A wedding ring [100%] An arm bracelet \rightarrow An arm ring [25%] 3. A wedding ring \rightarrow A wedding ring [100%] An arm bracelet \rightarrow An arm ring [50%] 4. A wedding ring \rightarrow A wedding ring [100%] An arm bracelet → An arm ring [100%]

Synthetic semantic change







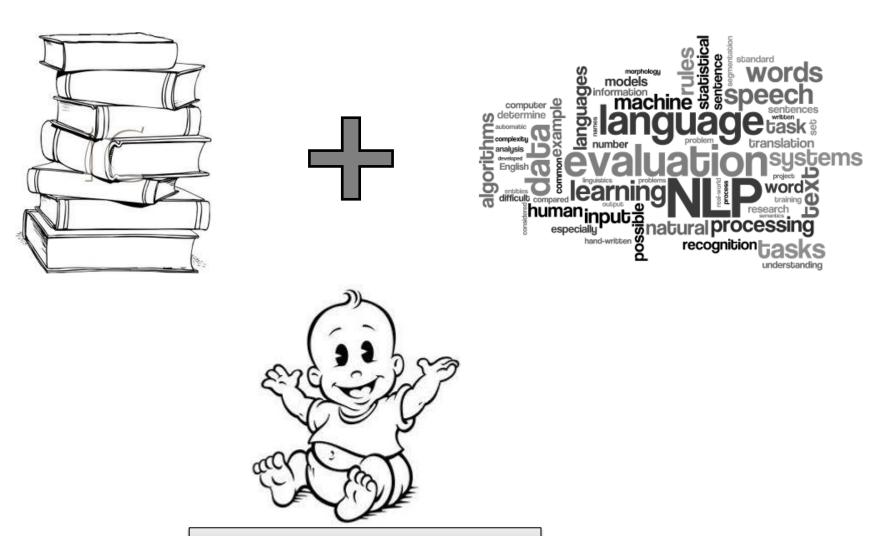


Conclusions

Test your models!

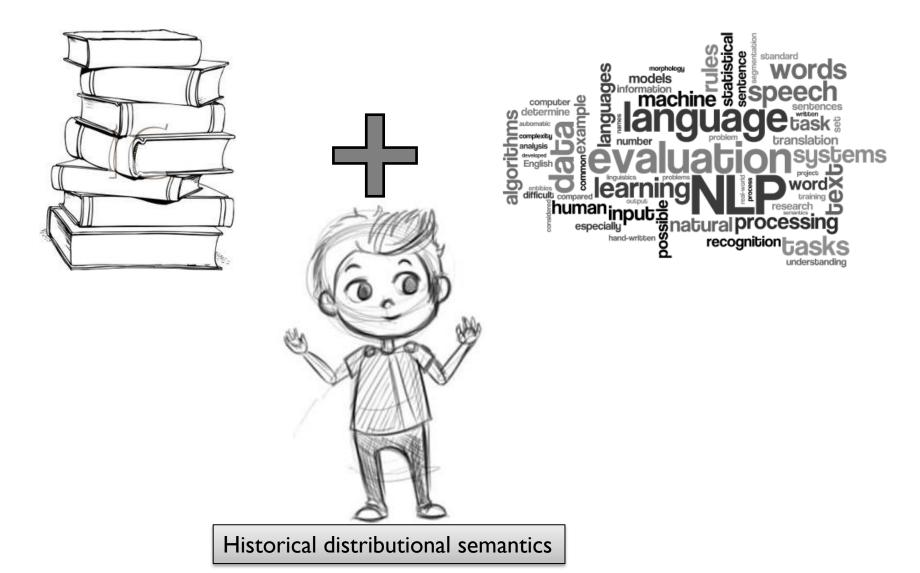
- Use randomized control tests to evaluate levels of noise and alleviate confounds in models.
- Simulate the phenomenon you are investigating.
- Test models' performance on simulated data.
- Not limited to word embedding!

Doing it right



Historical distributional semantics

Doing it right



Credits

• <u>Dubossarsky et al. 2015</u>:

Chris Dyer, Yulia Tsvetkov and Eitan Grossman

- <u>Dubossarsky et al. 2017</u>:
 Eitan Grossman and Daphna Weinshall
- Dubossarsky et al. 2019:

Simon Hengchen - University of Helsinki Nina Tahmasebi - University of Gothenburg Dominik Schlechtweg - University of Stuttgart

Thank you!

SemEval-2020. Coming soon...

hd423@cam.ac.uk