One-to-X analogical reasoning on word embeddings: a case for diachronic armed conflict prediction from news texts Andrey Kutuzov, Erik Velldal, Lilja Øvrelid

Language Technology Group, University of Oslo, Norway {andreku,erikve,liljao}@ifi.uio.no

What is wrong with standard word analogies?

- Analogical inference ('word analogies') is used to evaluate word embeddings [Mikolov et al., 2013]
 - ► 'KING is to QUEEN as MAN is to ? (WOMAN)'
- ► A relational similarity task [Jurgens et al., 2012] Problem: exactly one best answer for each question: ► WOMAN and GIRL cannot be both correct answers.

One-to-X analogies

- We extend analogical inference to include multiple-ended relations:
 - one-to-one ('Jack and Jill are friends')
 - one-to-many ('Jack and Olaf are also friends')
 - one-to-none ('John has no friends')
- For a vocabulary V, a relation z, and an entity $x \in V$,

Learning a 'projection/transformation' matrix

- 1. Apply 'semantic directions' (learned on the previous year data) to the next year.
- 2. If we know the 'Location: Insurgent' pairs from a time period n, we can find pairs with the same relation in n + 1.
- 3. The input: gold pairs for the year n and their embeddings from the model M_n .
- 4. Linear projection $T \in \mathbb{R}^{p \times d}$ trained for each year pair ('2010–2011', '2011–2012'...) • p is the number of pairs, and d is the vector size

► Linguistically: T matrix is a prototypical armed conflict relation;

- ${\scriptstyle ullet}$ identify all pairs $x;i\in V$ such that z holds between x and i,
- providing as many correct answers as possible, and as few incorrect answers as possible.

Historical armed conflicts data

https://www.ucdp.uu.se/

- ► We use one particular type of asymmetric semantic relations:
- ► a geographical location (country) and an insurgent group in an armed

- Geometrically: 'average direction' from locations to active insurgent groups in M_n .
- Optimal T is found by solving d normal equations (simple linear regression).
- For any location v, there is its 'armed conflict projection': $\hat{i} = v \cdot T$

Evaluation setup

- 1. Each yearly test set contains all locations (some peaceful).
- 2. Predict correct sets of insurgents for conflict areas and empty sets for peaceful areas.
- 3. 'Armed conflict projection' \hat{i} produced for each location using T_n .
- 4. k nearest neighbours of \hat{i} in M_{n+1} are predicted insurgents ('baseline').

Precision, recall and F1 score (with false negatives), averaged across all years in the test set.

Cosine threshold

Problem: the 'baseline' system will always yield k incorrect candidates for peaceful areas. Solution:

- \triangleright real insurgents are closer to \hat{i} than other nearest neighbours
- learn a hypersphere with the radius r as a cosine threshold:

$$m = \frac{1}{\sum_{p} cos} (\hat{i} - a) + a$$

- conflict against the government of the country:
- several armed groups can operate in one location (one-to-many)
- one armed group can operate in several locations (many-to-one)
- ► some locations are peaceful: no armed groups there (one-to-none)
- Easily extended to diachronic setup: armed conflicts start and end.
- ► Historical armed conflicts data from the UCDP project [Gleditsch et al., 2002]
 - ► UCDP/PRIO Armed Conflict Dataset [Pettersson and Eck, 2018]
 - Example entry: '2016: Afghanistan: ["Taliban", "Islamic State"]'

UCDP data subsets

	Gigaword	NOW (News on Web)
Corresponding corpus	[Parker et al., 2011]	https://corpus.byu.edu/now/
Corpus size, tokens	4.8 billion	5.9 billion
Time span	1995–2010	2010-2017
Locations	52	42
Insurgents	127	78
Conflict pairs	136	102
New pairs share	37%	39%
Conflict locations share	46%	56%
Insurgents per location	1.65	1.50

$r=rac{-}{p}\sum\limits_{p=0}\cos\left(\imath_{p},g_{p} ight)+\sigma$

igstarrow ... $m{g}_{m{p}}$ is the insurgent in the pth pair, and $m{\sigma}$ is one stdev of the cosine distances in $m{p}$ Keep only the candidates within the hypersphere inferred from the previous year.

Prediction of armed groups in Algeria, 2014

Prediction of armed groups in Yemen, 2011

Experiments (k = 2)

Projection matrix T_n and the threshold r_n are applied to the year n+1:

Dataset	Algorithm	Precision	Recall	F1
Gigaword	Baseline	0.19	0.51	0.28
	Cosine threshold	0.46	0.41	0.41
NOW	Baseline	0.26	0.53	0.34
	Cocino throshold	0.12	$\cap 11$	0/11

Incremental diachronic word embeddings

Word embeddings retain enough structure to trace a relation after the model was additionally trained with new in-domain texts.

Diachronic (temporal) word embeddings with incremental training

The model M_{n+1} is initialised with the weights from the model M_n ; if there are new words in the n+1 data which exceed the frequency threshold, then at the start of M_{n+1} training they are added to it and assigned random vectors.

 $\mathbf{U}_{\mathbf{U}}$

Summary

1. Word analogy task reformulated: multiple correct answers or no correct answer at all (one-to-X relations). 2. Temporal dataset of armed conflicts to evaluate one-to-X analogies. 3. Incremental word embeddings solve diachronic one-to-X analogies. 4. Learned cosine threshold can significantly improve the temporal one-to-X analogies performance by filtering out false positives. Code, datasets, trained diachronic embeddings: https://github.com/ltgoslo/diachronic_armed_conflicts

