Treat the Word As a Whole or Look Inside? - Subword Embeddings Model Language Change and Typology

Yang Xu¹ and Jiasheng Zhang² and David Reitter³

¹Department of Computer Science, San Diego State University

²College of Information Sciences and Technology, The Pennsylvania State University ³Google AI

yxu4@sdsu.edu, jpz5181@ist.psu.edu, reitter@google.com

Abstract

We use a variant of word embedding model that incorporates *subword* information to characterize the degree of compositionality in lexical semantics. Our models reveal patterns of long-term change in multiple languages: Indo-European languages put more weight on subword units in newer words, while conversely Chinese puts less weights on the subwords, but more weight on the word as a whole.

Presented in LChange 2019

The 1st International Workshop on Computational Approaches to Historical Language Change (co-located with ACL 2019), Florence, Italy

Hypothesis

• h^w of a word should correlate to its relative "age".

• Particularly, newer Chinese words should have larger h^w than those older words.

Measure the age of a word

Background

- Subword units play roles in determining word meanings differently across languages.
- Indo-European languages: a word consists of *morphemes*, e.g., root, affixes.
- Chinese: a word consists of *characters* (字).

Two empirical observations

- Chinese words: *monosyllabic* \rightarrow *bisyllabic*.
- -Examples: 胜 (to win) \rightarrow 胜利 (to win; victory); 助 (to help) \rightarrow 帮助 (to help).
- Indo-European languages: *synthetic* (single-word) \rightarrow *analytic* (multi-word):
- -Examples: des Hauses (*the house*'s) \rightarrow von dem Haus (*of the house*); Edith chanta (*Edith sang*) \rightarrow Edith a chanté (*Edith has sung*) (Haspelmath and Michaelis, 2017)
- Word embedding technique can provide new evidence.

Word2vec and variants

- Word2vec (Mikolov et al., 2013a) learn dense word vectors by:
- Predicting target word given context words (CBOW)
- Predicting context word given target word (Skipgram)

Variants: incorporating subword information

Character-enhanced word embedding (CWE) (Chen et al., 2015)

- The meanings of characters contribute to meaning of the word.
- Example: "教育" (education) = "教" (to teach) + "育" (to raise).
- Method: replace context word vector v_k with a weighted average character vectors. See eq. (1). fastText (Bojanowski et al., 2017)

- *First-appearance-year*: the earliest year that a word appears according to the Google Books Ngram dataset (GBN).
- Examples: "爱人" (love + person = lover) first appears in the year of 1804 (AD), while "爱心" (love + heart = love) first appears in 1981. Thus, "爱人" is an older word than "爱心".

Result: $h^w \sim$ first-appearance-year

Figure 3: Up: h^w increases with first-appearance-year Chinese words. Left: decreases with firstappearance-year in five Indo-European languages.

- **Opposite** $h^w \sim$ year relationships:
 - Subword units in Chinese (i.e., characters) carry more semantic weight in older words than in newer words.
 - In five Indo-European languages, subword units (i.e., n-grams) carry more semantic weight in newer words than in older words.

- Utilize *n*-grams to deal with sparsity.
- -Example: $\vec{v}_{love} = \vec{v}_{love} + \vec{v}_{<lo} + \vec{v}_{lov} + \vec{v}_{ove} + \vec{v}_{ve>}$
- Method: represent the word as the sum of its n-gram vectors. See eq. (2).

Method

Dynamic subword-enhanced embeddings (DSE)

- A variant model based on CWE and fastText characterizing the semantic weights carried by subword units in the word.
- Associate each word w with a parameter h^w
- Meaning of h^w : How informative a word itself is in predicting its neighbor words.
- -Meaning of $1 h^w$: How informative the subword units in w are in predicting its neighbors.

Average Embedding in DSE

Model architectures

Figure 2: DSE-SG

Ruling out word frequency effect

- Word frequencies might be a confounding effect that explains the $h^w \sim$ year correlation.
- Fit linear model with additional parameter: $h^w \sim \text{year} + \text{freq}$. β_{year} remains significant.
- Two-step verification: $m' = h^w \sim \text{freq}; m = residuals(m') \sim \text{year}$. β_{year} of the second model remains significant.
- Therefore, the observed $h^w \sim$ first-appearance-year is statistically reliable.

Result: Evaluation of Embeddings

Language	Model	Similarity	Analogy
Chinese	DSE-CBOW CWE	0.597 0.605	0.666 0.668
	DSE-SG fastText	0.583 0.591	0.651 0.588
English	DSE-CBOW CWE	0.659 0.669	0.302 0.324
	DSE-SG fastText	0.705 0.702	0.356 0.338

- Two tasks: word similarity (WordSim-353) and word analogy (questions-words).
- Compared with CWE and fastText, with our own implementations (by disabling the h^w parameters).
- DSE-CBOW compared with CWE; DSE-SG compared with fastText.

0.11

• In general, DSE performs decently well.

Result: Case Study

							/
Older words	h^w	Newer words	h^w	Older words	h^w	Newer words	h^w
安全(secure), 1581 安定(settled), 1632	0.75 0.72	安打(base hit), 1959 安检(security check), 1987	0.85 0.87	acid , 1517	0.73	acid osis, 1907 oxo acid s, 1953	0.07 0.07
组成(consist of) 1568	0.67	课题组 (research group) 1988	0.86	compare, 1524	0.86	compar ison, 1659 compar atives, 1810	0.61 0.14
覆盖 (cover), 1747	0.69	盖帽(block), 1972	0.91	human , 1504	0.87	trans human ism, 1955	0.50
		· · · ·					

Figure 1: DSE-CBOW

把握(hold), 1591 0.69 拖把 (mop), 1985 0.86 **lock**ing, 1600 0.77 un**lock**able, 1854

Conclusions and Future Work

- Chinese language: characters play less semantic roles in newer words than older ones.
- Indo-European languages: newer word place more semantic weight on subword units.
- Chinese words are treated more as a whole semantic unit "synthetically", while words in Indo-European languages require more "analytically" attention into the subword level.
- Future work: Investigate other Eastern-Asian languages; Use roots and affixes instead of *n*-grams.

Acknowledgements

• The authors acknowledge support from the National Science Foundation, grant BCS-1734304 to D. Reitter.